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Abstract: Helical inserts provide convenient service on low-friction linear-motion bearings. However, 
effective design requires a better understanding of contact mechanics and friction phenomena involved in 
the functioning of such bearings. The authors assume predominantly elastic contacts between the 
elements of the bearing, analyze the local deformations and pressure distribution and discuss 
experimental solutions for the evaluation of the friction coefficient in such bearings. 
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

1. INTRODUCTION 

Low-friction and convenient service linear-motion bearing 
with coil inserts have been demonstrated world-wide [1]. A 
basic configuration of helical insert bearing is represented in 
fig. 1.  

Fig. 1. Linear-motion bearing with helical insert 

Helical springs change their outer diameter during deflection 
and the maximum increase in diameter for a deflection to 
solid height is [2]: 
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 In equation (01)  represents the diameter of the wire, 

represents the mean diameter and 

d
D p the pitch of the 

unloaded helical spring. The end surface of the stop 

represented in fig. 1   compresses the spring until its coils are 
touching the housing, and the system spring–housing 

becomes stiff. The inside diameter of the housing  must 

satisfy the requirement: 
hiD
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 and  are the diameters of the unloaded and 

respectively deflected to solid height helical spring and 
shD

fD shD max . 

2. CONTACT MECHANICS IN HELICAL BEARINGS 

Small loads and low friction characterise linear-motion 
bearings with helical inserts. Under static conditions and 
assuming the surfaces in contact are smooth, the elastic limits 
of materials in contact are not exceeded, the spring and shaft 
are linearly elastic and isotropic, and localized Hertzian 
stresses develop as the two surfaces in contact deform under 
normal loads. The deformations are dependant of the 
geometry of surfaces in touch, their modulus of elasticity, and 
the applied normal load [3]. 

 
Torus-cylinder contacts are specific to linear-motion bearings 
with helical inserts. Both solids involved in contact can be 
described by quadratic surfaces and, according to Hertzian 
contact theory, an elliptical contact surfaces supporting 
ellipsoidal distribution of pressures should result under static 
loads. However, if the centre-line of the cylinder is aligned 
with the centre-line of the torus, the resulting contact is a 
Goodman banana-shaped surface under normal loads. This 
effect can be investigated only numerically and Truman, Hills 
and Sackfield proposed the solution described in [4]. 
 
Analytical solutions to the Hertzian problem are possible by 
approximating the cylinder-torus with a cylinder-cylinder 
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contact. The diameters of the cylinders are unequal and their 
axes cross at the coil angle. 
 
For the most general case of quadratic surfaces in contact 
under a concentrated load P , the area of contact is bounded 

by an ellipse 12222  byax  , where a  and b  are 

the semi-axes of the ellipse. The pressure distribution over 
the elliptical area of contact is described by [5]: 
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The compression equations are: 
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The semi-axes   and b  of the ellipse are generally 
unknown and are usually determined from known values of 

  and 

a

A B . , , 1E 2E 1 , and 2  from equations (07) and 

(08) represent the Young’s moduli of elasticity, respectively 
the Poisson’s ratio of the materials of bodies involved in 
contact. Let us first consider the contact between two 

cylinders of radii  and  with their axes at right angles. 

For this case [5]: 
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Equations (04), (05) and (06) can be expressed in terms of the 
eccentricity of the ellipse of contact using: e
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The same equations can be expressed in terms of complete 
elliptic integral of the first and second class with the changes 

of variable  2a  and .  2cot   goes from 0  to 

 as    goes from 2  to 0 , and 

 [5]. d2csc2 cotd

The complete elliptic integral of the first class K  in 
Legendre form and its derivative are [6]: 
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The complete elliptic integral of the second class E  in 
Legendre form (not to be confused with the Young’s moduli 
mentioned before) and its derivative are [6]: 
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Equations (04), (05) and (06) can be therefore written in 
terms of the complete elliptic integrals K  and E : 
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Equations (15), (16) and (17) can be combined to provide a 
compression equation independent of a : 
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The equations connecting the complete elliptic integrals K  
and E  are: 
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From (20) and (21) one can obtain: 
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he approximation (28) has a substantial drawback: the T
characteristic is discontinuous at 0v  , which creates 
considerable computational difficulties. There are numerous 
models of translational friction without this discontinuity. 
The friction force-relative velocity characteristic of this 
approximation is shown in Fig. 3. The discontinuity is 
eliminated by introducing a small and finite region in the zero 
velocity vicinity, within which friction force is assumed to be 
linearly proportional to velocity, with the proportionality 

coefficient b thF v , where thv  is the velocity threshold. It 

has been pr perimenta  that the velocity threshold in 
the range between 10-4 and 10-6 m/s is a good compromise 
between the accuracy and computational effectiveness [7]. 
The translational friction force computed with this 
approximation does not actually stop relative motion when 
acting forces drop below breakaway friction level. The bodies 
will creep relative to each other at a very small velocity 
proportional to acting force. As a result of introducing the 
velocity threshold, the translational friction equation is 
slightly modified: 
 

oven ex lly
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Fig. 3

 

he evaluation of the static friction coefficient in linear-

. Continuous translational friction model 

T
motion bearings with helical insert requires high-accuracy 
experimental approaches. In a typical configuration 
developed by the authors of this paper, the bearing is placed 
on a ramp with adjustable angle  , as shown in Fig. 4. The 
shaft is connected to a digital fo e gauge acting vertically 
with a string guided by a pulley. The force gauge –Imada ZP-

5N - records and zooms in to analyze data with Imada ZP 
Recorder software. The force gauge and the adjustable ramp 
with the bearing under evaluation are placed on a high 
capacity hand wheel test stand – Imada HV-500. The stand, 
force gauge and a screenshot of the recording process are 
represented in Fig. 5. 
    

rc

 

Fig. 4. Schematic of experimental setup for evaluating the 
 static friction coefficient. Imada stand and digital gauge are

not shown. 

 

Fig. 5. Imada stand, digital gauges and recorder screenshot. 
Adjustable ramp is not shown. 

For static conditions the force F  evaluated by the digital 

gauge is: 

                     cos sinF G G R                   (31) 




